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Abstract: A trapdoor function is a one-way function with trapdoor, which is indispensable for
getting a preimage of the function. In lattice-based cryptography, trapdoor function plays an important
role in constructing the secure cryptographic schemes like identity-based encryption, homomorphic
encryption, or homomorphic signature. There are three categories of trapdoor functions as standard
trapdoor, lossy trapdoor, and homomorphic trapdoor functions. Lossy trapdoor function is a trapdoor
function that behaves in two ways as a standard trapdoor function or by losing information from the
input. Homomorphic trapdoor function can evaluate the computation of trapdoor function results.

In this paper, we survey all the public literature on lattices studying lattice-based trapdoor functions
and their preimage sampling algorithms to the best of our knowledge. Then, we classify these trapdoor
functions into three categories depending on their cryptographic features and suggest their feasibility
to design cryptographic primitives.

Keywords: lattice-based trapdoor function, (preimage) sampling algorithm, lossy trapdoor func-
tion, homomorphic trapdoor function

1 Introduction

1.1 Background and Motivation

After Ajtai’s seminal work [1] on lattices, lattices
have become one of the essential tools in cryptology.
Lattice-based cryptography is one candidate of post
quantum cryptography, which remains secure against
the upcoming quantum computer. It has the advan-
tage of the security based on the worst-case hardness
assumptions instead of average-case hardness assump-
tions. With these advantages, lattices have been ap-
plied to various areas in cryptology recently such as
identity-based encryption [2], fully homomorphic en-
cryption [3–5], multilinear maps [6], and homomorphic
signatures [7–9].

A trapdoor function samples a preimage of a given
output with a trapdoor but remains as a one-way func-
tion without its trapdoor. To construct cryptographic
primitives on lattices and prove their security rigor-
ously, we should find the proper lattice-based trapdoor
function. In order to choose the proper trapdoor func-
tion, we study the literature on lattice-based cryptog-
raphy. Then, we categorize the types of trapdoor func-
tions depending on their cryptographic features and
suggest their feasibility to design cryptographic primi-
tives.

1.2 Outline of the Paper

In this work, we provide the formal definition of three
types of trapdoor functions and their applications. Sec-
tion 2 describes a notation in this paper and some back-
ground on lattices including hard lattice problems and
discrete Gaussian distribution. In Section 3, we give
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a formal definition of trapdoor functions and construc-
tion of Gentry et al.’s lattice-based trapdoor function.
Then, we introduce the various trapdoor functions with
their applications.

The description and applications of lossy trapdoor
functions and homomorphic trapdoor functions are dis-
cussed in Sections 4 and 5, respectively. Finally, we give
concluding remarks and possible directions for future
work in Section 6.

2 Preliminaries

2.1 Notation

We denote vectors with small bold letters (e.g., x,
y) and matrices with large bold letters (e.g., A, B).
We denote R and Z to express the set of real numbers
and the set of integers, respectively, and small non-bold
letters to express real numbers (e.g., a, b, c).

For any integer q ≥ 2, Zq denotes the ring of integers
modulo q and Zn×mq denotes the set of n×m matrices
with entries in Zq. When A ∈ Zn×m1

q , B ∈ Zn×m2
q ,

we write the concatenation of A and B as [A | B] ∈
Zn×(m1+m2)
q and a transpose of A as AT .
‖x‖ represents the Euclidean norm of a vector x

and ‖B‖ represents the maximum of Euclidean norms
of the columns of a matrix B. For instance, when
B = {b1|b2| · · · |bm}, ‖B‖ = maxi ‖bi‖. Then, we

denote B̃ = {b̃1|b̃2| · · · |b̃m} for the Gram-Schmidt or-

thogonalization of columns of B and denote ‖B̃‖ =

maxi ‖b̃i‖ for Gram-Schmidt norm of B.

2.2 Hard Problems on Lattices

A lattice Λ can be defined as a discrete subgroup of
Rm with its basis B. A basis B of Λ is a set of linearly
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independent vectors B = {b1,b2, · · · ,bm} which spans
the lattice Λ and B = (b1|b2| · · · |bm) is called a basis
matrix of the lattice Λ.

Integer lattices are defined as a subgroup of Zm in-
stead of Rm. For a matrix A ∈ Zn×mq , we can denote
lattices as a set Λu

q (A) = {e ∈ Zm|A · e = u mod q}
and as a set Λ⊥q (A) = {e ∈ Zm|A ·e = 0 mod q} when
u = 0.

Shortest Vector Problem (SVP) is to find the non-
zero lattice vector v which is the closest to the origin,
in a lattice Λ, and Closest Vector Problem (CVP) is to
find the lattice vector v in a lattice Λ which is the clos-
est to the vector w. Both SVP and CVP are considered
as a worst-case hardness problem in lattice. On the
other hand, there are two popular average-case hard-
ness problems in lattice which can be reduced to the
aforementioned worst-case hardness problem in lattice.

One is called Short Integer Solution (SIS) problem,
which can be used to construct one-way functions or
signature schemes and the other is Learning With Er-
rors (LWE) problem whose decisional version is used
for guaranteeing the security of encryption schemes like
identity based encryption and fully homomorphic en-
cryption schemes. There are also ring variant of these
problems. The formal definition of SIS and LWE prob-
lems are given below.

Definition 1. (SIS problem) Given a matrix A ∈
Zn×mq with m ≥ n log q and its corresponding lattice

Λ⊥q (A) = {e ∈ Zm|A ·e = 0 mod q, }, it is hard to find

a small vector e ∈ Λ⊥q (A), such that ‖e‖ ≤ β for some

β ≥
√
n log q and A · e = 0 (mod q), whose coefficients

are −1, 0, or 1.

Definition 2. (LWE problem) For a positive integer
m,n with m > n, integer q ≥ 2, a vector s ∈ Znq , and a
probability distribution D on the interval [0, q)m, it is
hard to distinguish between uniformly chosen (A,y)←
Zn×mq × [0, q)m and the sampling (A,AT s+e mod q)
where A← Zn×mq and e← D.

2.3 Discrete Gaussian Distribution

Given L as any subset of Zm, a Gaussian function
on Rm with center c and a parameter γ can be defined
as ργ,c(x) = exp(−π‖x-c‖2/γ2) for any vector c ∈ Rm
and any positive parameter γ > 0,

For a subset L ⊂ Zm, we can define discrete Gaus-
sian distribution, which is the m-dimensional Gaussian
distribution whose support is restricted to the subset
L and its density function is defined as

DL,γ,c(x) =
ργ,c(x)∑

y∈L ργ,c(y)

and for the sake of simplicity, we denote ργ(x) and
DL,γ(x) when a center c = 0.

3 Trapdoor Functions

We give a formal definition and security requirements
to make trapdoor functions and the concrete construc-
tion of lattice-based trapdoor functions by Gentry et
al. [10]. Then, we discuss several trapdoor functions
on lattices and their applications in cryptographic pro-
tocols.

3.1 Lattices and Trapdoor Functions

Gentry et al. [10] proposed the notion of preimage
sampleable (trapdoor) functions whose preimage can
be efficiently sampled using the trapdoor as below:

TrapGen(n) :
Output a description A for a function fA : Dn →
Rn and its trapdoor information T. In the con-
text of lattice-based cryptography, a description
A is a matrix for a lattice ΛA and a trapdoor
information T is a short basis for ΛA.

SampleDom(n) :
Sample an e from a distribution over the domain
Dn where the output distribution fA(e)← Rn is
uniform.

SamplePre(A, T, y) :
Sample a preimage x ∈ Dn such that fA(x) =
y ∈ Rn.

This function behaves as a one-way function without
trapdoor. they also defined the collision-resistance of
the trapdoor functions as the one for hash functions.

Alwen and Peikert [11] proposed the lattice-based
trapdoor generation algorithm L.TrapGen (n,m, q)
which generates a matrix A ∈ Zn×mq with its “trap-
door” matrix T ∈ Zm×m satisfying the following func-
tionality:

L.TrapGen(n,m, q) :
For the security parameter n, m = d6n log qe and
an integer q, this algorithm outputs a matrix A ∈
Zn×mq and its trapdoor matrix T such that T is

a basis of Λ⊥q (A) with low Gram-Schmidt norm

‖T̃‖ ≤ 30
√
n log q.

Without loss of generality, we assume that a matrix
A ← L.TrapGen(n,m, q) has a full rank. Then, the
distribution of the output of L.TrapGen(n,m, q) can

be sampled efficiently for γ ≥ ‖T̃‖ ·ω(
√

log n) where T
is a trapdoor matrix of an n-dimensional lattice Λ as
below:

L.SamplePre(A, T, γ, b) :
This is a preimage sampling algorithm for a ma-
trix A ∈ Zn×mq , its trapdoor matrix T ∈ Zm×mq ,
a real number γ > 0, and a vector b ∈ Zn. This
algorithm outputs a sample s from a distribution
that is statistically close to DΛu

q (A),γ .
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The above two algorithms L.TrapGen(n,m, q) and
L.SamplePre(A, T, γ, b) construct a collision-resistant
trapdoor function assuming SIS problem in lattices with
discrete Gaussian distribution and can be essential tools
to make lattice-based signature schemes.

3.2 Application of Trapdoor Functions

Following Gentry et al.’s work [10], there are variants
of techniques to use trapdoor functions.

In 2009, Peikert [12] introduced the notion of chosen-
output security for trapdoor functions to construct a
secure cryptosystem against a chosen-ciphertext attack.
To get this property, a new deterministic polynomial-
time algorithm Ver(A, s,b) called a preimage verifier
was introduced. Then, we say a trapdoor function is
chosen-output secure if it satisfies the following:

1. (Completeness) For any s ∈ Dn, Ver(A, s,b) ac-
cepts with overwhelming probability when fA(s) =
b.

2. (Uniqueness) For any b ∈ Rn, there is at most
one value of s where fA(s) = b is accepted.

3. (Correctness) For any b ∈ Rn, b has a valid
preimage s. i.e. s ← SamplePre(A,T, γ,b)
.

Cash et al. [13] introduce the technique to extend
the basis to higher dimension in the concept of bonsai
trees using the following algorithm.

ExtBasis(T, B) :
For the trapdoor matrix T of A ∈ Zn×mq and the

matrix B = A‖A′ ∈ Zn×(m+m′)
q , this algorithm

outputs a basis S for Λ⊥q (B) with ‖S̃‖ = ‖T̃‖ in
polynomial time, i.e., Gram-Schmidt norm of S
is equal to that of T.

The above algorithm indicates the controlled growth
of the bonsai tree and the hierarchy of the lattices has
a well-quasi-ordering where any short basis of a parent
lattice can be easily extended to a short basis of any
higher-dimensional child lattice.

They showed that this technique can be applicable
to a hash-then-sign signature without random oracles
and a hierarchical identity-based encryption scheme.

Boyen [14] proposed the general framework to en-
code all bits at once by lattice trapdoor mixing and
vanishing techniques.

In that signature scheme, they introduced a new gen-
eration algorithm TwoSideGen(1λ) by slightly modi-
fying Cash et al.’s extending basis algorithm.

TwoSideGen(1λ) outputs two random matrices A ∈
Zn×mq and R ∈ Zm×mq where A is uniform and R is
from some distribution R. Then, for some B ∈ Zn×mq ,
F = [A | AR + B] ∈ Zn×2m

q and q defines the public
parameters of a two-sided function.

(F, q) is indeed a trapdoor function that samples the
preimage with a trapdoor for either A or B.

The benefit of using a two-sided function is that we
use the “firm” preimage trapdoor TA that can always
sample the preimage in the real scheme, whereas we
use the “fickle” preimage trapdoor TB for a matrix
B which sometimes “vanishes” depending on a given
message.

In the signature scheme, they generated l+1 random
matrices C0,C1, · · · ,Cl for a message m with length l
and “mixed” them as Cm =

∑l
i=0(−1)miCi where mi

is the i-th value of the message m. Then, they built
practical and fully secure signatures and identity based
encryption in the standard model by achieving this en-
coding framework.

Brakerski and Kalai [2] introduced the formal defini-
tion of a ring trapdoor function and gave a generic con-
struction of ring signature scheme from a ring trapdoor
function. We present a ring homomorphic function for
lattices which satisfies the following:

1. Sampling a function:
We can sample a random matrix A ∈ Zn×mq and
the function fA(x) = Ax.

2. Sampling a trapdoor:
We can generate a pair of a random matrix A
and its trapdoor T using the trapdoor generation
algorithm L.TrapGen(n,m, q).

3. Trapdoor property:
Given A1,A2, · · · ,At ∈ Zn×mq , a trapdoor Si for
some Ai, and a vector v ∈ Znq , we can sample
xj from a distribution X for all j 6= i and use
Si to sample xi from X such that Aixi = v −∑
j 6=i Ajxj .

4. Ring one-wayness:
The above trapdoor function is a one-way func-
tion assuming the hardness of SIS problem.

Wang and Sun [15] also designed a ring signature
using a different sampling algorithm for ring trapdoor
functions.

They introduced a new preimage sampling algorithm
GenSamplePre(AS ,AR,TR, γ,y) using the lattice ba-
sis delegation technique.

Let k, k1, k2, k3, k4 be positive integers as k = k1 +
k2 + k3 + k4. We write AS = [AS1 | AS2 | AS3 | AS4 ]
∈ Zn×kmq where ASi

∈ Zn×kimq for each i and AR =

[AS1 | AS3 ] ∈ Zn×(k1+k3)m
q and its trapdoor TR. Then,

one can sample a preimage from a vector y as below:

GenSamplePre(AS ,AR,TR, γ,y) :

a. Sample eS2
∈ Zn×k2mq and eS4

∈ Zn×k4mq .

b. Let z = y − AS2
es2 − AS4

es4 and sam-

ple eR = [eS1 | eS3 ] ∈ Zn×(k1+k3)m
q from

L.SamplePre (AR,TR, γ, z).

c. Output e = [eS1
| eS2

eS3
| eS4

].
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Compared to Brakerski and Kalai’s work [2], Wang
and Sun’s work gives ring signature scheme in the ran-
dom oracle model.

Micciancio and Peikert [16] gave a new concept of
trapdoors called a “gadget” trapdoor and suggested sim-
pler and more efficient algorithms for inverting LWE,
sampling SIS preimages, and delegating basis securely.

They defined a primitive matrix G ∈ Zn×wq satis-
fying G · Zw = Znq and constructed a lattice with G.
Then, given A ∈ Zn×mq and G ∈ Zn×wq , they intro-

duced a new notion of G-trapdoor R ∈ Z(m−w)×w
q and

tag (label) of the trapdoor H ∈ Zn×nq where A

[
R
I

]
=

HG and H is invertible.
There are efficient algorithms for generating trap-

doors, inverting LWE, sampling SIS preimages, and
delegating basis securely. Among them, we describe
the new trapdoor generation algorithm by Micciancio
and Peikert [16] as below:

MP.TrapGen(A∗,H) :
Given a matrix A∗ ∈ Zn×m∗q and an invertible
matrix H ∈ Zn×nq , we can generate a matrix
A = [A∗ | HG−A∗R] ∈ Zn×mq for a matrix

R ∈ Zm∗×wq .

Since the size of a G-trapdoor grows linearly in the
lattice dimension m, the basis delegation algorithm
becomes much more efficient than previous work by
Cash et al. [13] and derive faster implementation on
lattice-based cryptography such as threshold protocols
for lattice-based signatures or hierarchical identity-based
encryption [17].

4 Lossy Trapdoor Function

In this section, we give a formal definition and secu-
rity requirements of lossy trapdoor functions and dis-
cuss several applications of lossy trapdoor functions
from the literature.

4.1 Definition and Security Requirements

In 2011, Peikert and Waters [18] proposed a general
cryptographic primitive called lossy trapdoor functions
and its construction based on Diffie-Hellman problem
and LWE problem.

As a security parameter, n(λ) = poly(λ) represents
the input length of the trapdoor function, k(λ) ≤ n(λ)
represents the lossiness of the collection, and r(λ) =
n(λ)− k(λ) represents the residual leakage.

Then, (n, k)-lossy trapdoor function is a tuple of
poly-time algorithms (Sltdf , Fltdf , F

−1
ltdf ) with the fol-

lowing functionality:

Sltdf : Sinj(·) = Sltdf (·, 1) generates a description A of
a function fA and its trapdoor information T like
the normal trapdoor function. But, Slossy(·) =
Sltdf (·, 0) outputs a description A of a function
fA but ⊥ for trapdoor information.

Fltdf : Fltdf (A, ·) computes an injective function fA(·)
over the domain {0, 1}n.

F−1
ltdf : F−1

ltdf (T, ·) computes f−1
A (·). If a value y ∈

{0, 1}n doesn’t have a preimage, then the behav-
ior of F−1

ltdf (T, ·) is not clear and thus, we need to
check the correctness.

For the security of lossy trapdoor functions, the dis-
tribution of the output of Sinj(·) = Sltdf (·, 1) and the
output of Slossy(·) = Sltdf (·, 0) should be hard to dis-
tinguish.

In lattice-based constructions, they use the relaxed
term called “almost-always” lossy trapdoor functions
such that there is only a negligible probability that
fA(·) is not injective or F−1

ltdf (T, ·) incorrectly computes

f−1
A (·) for some input.
If we extend this concept to a tree-like construction

for more than two functions by denoting each leaf as a
function, then we call it an all-but-one (ABO) trapdoor
function if only one leaf expresses a lossy function.

Lossy trapdoor functions can be applied to many
cryptographic primitives like pseudorandom generators,
collision-resistant hash functions, and oblivious trans-
fer protocols.

4.2 Application of Lossy Trapdoor Functions

After Peikert and Waters [18] had introduced the
concept of lossy trapdoor functions, Bellare et al. [19]
and Qin et al. [20] extended the notion as identity-
based lossy trapdoor functions and leakage-resilient lossy
trapdoor functions, respectively, without using lattices
as a main tool.

Meanwhile, Xie et al. [21] introduced the notion of
inner-product trapdoor and inner-product lossy trap-
door functions to construct an inner-product encryp-
tion scheme from lattices.

An inner-product trapdoor function consists of four
poly-time algorithms (IP.Param, IP.TrapGen, IP.Eval,
IP.Inv) with the following functionality:

IP.Param(n, l) :
Given a security parameter n and a predicate
length parameter l, it computes a public parame-
ter params = (A,B, {Aij}) and a master secret
key msk = TA using L.TrapGen(n,m, q).

IP.TrapGen(params,a,msk) :
Given a predicate a ∈ Zq, it outputs an inversion
key ska = Sa where Sa is a basis for a matrix
Ua = [A | ΣiΣjaijAij ] by ExtBasis(TA,Ua).

IP.Eval(params,b,m) :
Given an attribute b ∈ Σ and an input value m,
it outputs an output value Cb by some matrix
multiplication.

IP.Inv(params, ska, {Cb,b}) :
Given an function value {Cb,b}, this algorithm
outputs an inverse value m.
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Alwen et al. [22] introduced new lossy trapdoor func-
tions and ABO trapdoor functions based on Learning
With Rounding (LWR) problem, instead of standard
LWE problem, as below:

Definition 3. (LWR problem) For a security pa-
rameter λ and corresponding integers n = n(λ),m =
m(λ), q = q(λ), p = p(λ), LWR problem states that for

a given A← Zm×nq , s← Znq , and u← Zmq ,
(
A, bA · scp

)
and

(
A, bucp

)
are computationally indistinguishable.

They define the l(λ)-entropic lossy trapdoor func-
tions and l(λ)-entropic ABO trapdoor functions by mod-
ifying the definition of the lossiness as losing the en-
tropy and give a construction based on LWR problem.

Injective functions :
For any (pk, sk) from Gen(1λ, injective) we get
F−1(sk, F (pk, s)) = s for all s and fpk(·) is a
injective function.

Lossy functions : For pk ← Gen(1λ, lossy), fpk(·)
loses the entropy up to l(λ). This parameter l(λ)
is the residual leakage of this lossy trapdoor func-
tion.

Both l(λ)-entropic lossy trapdoor functions and l(λ)-
entropic ABO trapdoor functions can be used to re-
place lossy trapdoor functions by Peikert and Waters
[18] in various applications.

5 Homomorphic Trapdoor Function

In this section, we give a formal definition and secu-
rity requirements of homomorphic trapdoor functions
and the concrete construction based on lattice by Gor-
bunov et al. [9]. Then, we discuss several applications
of lossy trapdoor functions from the literature.

5.1 Definition and Security Requirements

Gorbunov et al. [9] introduced the new concept of ho-
momorphic trapdoor functions to construct the levelled
fully homomorphic signature scheme.

Conceptually, a homomorphic trapdoor function is
a trapdoor function that can take a tuple of values
{ui, xi, vi = fpk,xi(ui)}i∈[N ] and compute an input u∗

and an output v∗ = fpk,g(x1,x2,··· ,xN )(u
∗). Formally,

a homomorphic trapdoor function consists of five poly-
time algorithms (H.Gen, f, f−1, H.Evalin,H.Evalout)
with the following functionality:

H.Gen(1λ) :
A security parameter λ defines the index space X ,
input space U , output space V, and input distri-
bution DU where one can efficiently sample uni-
formly at random from V.

fpk,x : An deterministic algorithm to get the function
value.

f−1
sk,x : A probabilistic algorithm to get the inverse

H.Evalin and H.Evalout :
From a function g and a tuple of {ui, xi, vi}, it
outputs u∗ and v∗.

The security requirements of homomorphic trapdoor
functions (HTDF security) are the one-wayness of the
function without trapdoors and somewhat claw-freeness
which holds when it is negligible to find u, u′ ∈ U and
x 6= x′ ∈ X such that fpk,x(u) = fpk,x′(u

′). A colli-
sion resistance property is not necessary for the security
of homomorphic trapdoor functions and the existential
unforgeability of fully homomorphic signatures.

5.2 Application of Homomorphic Trapdoor Func-
tions

As an extension of Gorbunov et al.’s trapdoor func-
tion [9], Alperin-Sheriff [23] define the notion of punc-
turable homomorphic trapdoor functions to get shorter
signature scheme, by combining homomorphic trap-
door functions with lattice mixing and vanishing tech-
nique [14].

Wang et al. [24] suggested the identity-based homo-
morphic trapdoor functions with a better security no-
tion by achieving collision resistance. Then, they con-
structed a strongly unforgeable identity-based fully ho-
momorphic signature scheme.

Recently, Fiore et al. [25] showed a multi-key homo-
morphic signature scheme with the homomorphic trap-
door functions.

6 Conclusion and Future Work

We investigate previous lattice-based trapdoor func-
tions from Gentry et al.’s trapdoor function [10] with
an efficient sampling algorithm to Gorbunov et al.’s
recent work [9] on homomorphic trapdoor functions to
construct levelled fully homomorphic signature scheme.

We summarize the classification of lattice-based trap-
door functions as standard trapdoor, lossy trapdoor,
and homomorphic trapdoor functions with their fea-
tures and cryptographic applications in Appendix A.

As future work, we plan to define ring homomorphic
trapdoor function and its security requirements to con-
struct a ring homomorphic signature scheme.

Acknowledgement

This work was supported by the National Research
Foundation of Korea(NRF) grant funded by the Korea
government(MSIP) (No. NRF-2015R1A2A2A01006812).

References

[1] M. Ajtai, “Generating hard instances of lattice
problems,” in Proceedings of the Twenty-Eighth
Annual ACM Symposium on Theory of Comput-
ing, pp. 99–108, ACM, 1996.

[2] Z. Brakerski and Y. T. Kalai, “A framework for
efficient signatures, ring signatures and identity
based encryption in the standard model,” IACR
Cryptology ePrint Archive 2010/86, 2010.

5



[3] C. Gentry, “Fully homomorphic encryption using
ideal lattices,” in Proceedings of the Forty-First
Annual ACM on Symposium on Theory of Com-
puting, pp. 169–178, ACM, 2009.

[4] Z. Brakerski and V. Vaikuntanathan, “Efficient
fully homomorphic encryption from (standard)
lwe,” SIAM Journal on Computing, vol. 43, no. 2,
pp. 831–871, 2014.

[5] C. Gentry, A. Sahai, and B. Waters, “Ho-
momorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster,
attribute-based,” in Advances in Cryptology–
CRYPTO 2013, pp. 75–92, Springer, 2013.

[6] S. Garg, C. Gentry, and S. Halevi, “Candidate
multilinear maps from ideal lattices,” in Advances
in Cryptology–EUROCRYPT 2013, vol. 7881,
pp. 1–17, Springer, 2013.

[7] D. Boneh and D. M. Freeman, “Linearly homo-
morphic signatures over binary fields and new
tools for lattice-based signatures,” in Public Key
Cryptography–PKC 2011, pp. 1–16, Springer,
2011.

[8] D. Boneh and D. M. Freeman, “Homomorphic sig-
natures for polynomial functions,” in Advances
in Cryptology–EUROCRYPT 2011, pp. 149–168,
Springer, 2011.

[9] S. Gorbunov, V. Vaikuntanathan, and D. Wichs,
“Leveled fully homomorphic signatures from stan-
dard lattices,” in Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Com-
puting, pp. 469–477, ACM, 2015.

[10] C. Gentry, C. Peikert, and V. Vaikuntanathan,
“Trapdoors for hard lattices and new crypto-
graphic constructions,” in Proceedings of the For-
tieth Annual ACM on Symposium on Theory of
Computing, pp. 197–206, ACM, 2008.

[11] J. Alwen and C. Peikert, “Generating shorter
bases for hard random lattices,” Theory of Com-
puting Systems, vol. 48, no. 3, pp. 535–553, 2011.

[12] C. Peikert, “Public-key cryptosystems from the
worst-case shortest vector problem,” in Proceed-
ings of the Forty-First Annual ACM Symposium
on Theory of Computing, pp. 333–342, ACM,
2009.

[13] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert,
“Bonsai trees, or how to delegate a lattice basis,”
Journal of Cryptology, vol. 25, no. 4, pp. 601–639,
2012.

[14] X. Boyen, “Lattice mixing and vanishing trap-
doors: A framework for fully secure short sig-
natures and more,” in Public Key Cryptography–
PKC 2010, pp. 499–517, Springer, 2010.

[15] J. Wang and B. Sun, “Ring signature schemes
from lattice basis delegation,” in International
Conference on Information and Communications
Security, pp. 15–28, Springer, 2011.

[16] D. Micciancio and C. Peikert, “Trapdoors for lat-
tices: Simpler, tighter, faster, smaller,” in Annual
International Conference on the Theory and Ap-
plications of Cryptographic Techniques, pp. 700–
718, Springer, 2012.

[17] R. Bendlin, S. Krehbiel, and C. Peikert, “How
to share a lattice trapdoor: Threshold protocols
for signatures and (h) ibe,” in Applied Cryptogra-
phy and Network Security, pp. 218–236, Springer,
2013.

[18] C. Peikert and B. Waters, “Lossy trapdoor func-
tions and their applications,” SIAM Journal on
Computing, vol. 40, no. 6, pp. 1803–1844, 2011.

[19] M. Bellare, E. Kiltz, C. Peikert, and B. Waters,
“Identity-based (lossy) trapdoor functions and ap-
plications,” in Annual International Conference
on the Theory and Applications of Cryptographic
Techniques, pp. 228–245, Springer, 2012.

[20] B. Qin, S. Liu, K. Chen, and M. Charlemagne,
“Leakage-resilient lossy trapdoor functions and
public-key encryption,” in Proceedings of the First
ACM workshop on Asia Public-Key Cryptography,
pp. 3–12, ACM, 2013.

[21] X. Xie, R. Xue, and R. Zhang, “Inner-product
lossy trapdoor functions and applications,” in
International Conference on Applied Cryptogra-
phy and Network Security, pp. 188–205, Springer,
2012.

[22] J. Alwen, S. Krenn, K. Pietrzak, and D. Wichs,
“Learning with rounding, revisited,” in Ad-
vances in Cryptology–CRYPTO 2013, pp. 57–74,
Springer, 2013.

[23] J. Alperin-Sheriff, “Short signatures with short
public keys from homomorphic trapdoor func-
tions,” in Public Key Cryptography–PKC 2015,
pp. 236–255, Springer, 2015.

[24] F. Wang, K. Wang, B. Li, and Y. Gao, “Lev-
eled strongly-unforgeable identity-based fully ho-
momorphic signatures,” in International Infor-
mation Security Conference, pp. 42–60, Springer,
2015.

[25] D. Fiore, A. Mitrokotsa, L. Nizzardo, and
E. Pagnin, “Multi-key homomorphic authentica-
tors,” in Advances in Cryptology–ASIACRYPT
2016: 22nd International Conference on the The-
ory and Application of Cryptology and Informa-
tion Security, Part II, pp. 499–530, Springer, 2016.

6



Appendix A. Classification of Lattice-based Trapdoor Functions

Scheme Used Type Features and Applications

GPV08 [10] Normal

• Propose the definition of trapdoor function and collision-resistance property.
• Lattice-based trapdoor functions based on SIS and LWE problem with the preimage
sampling algorithm
• Applicable to any lattice-based signature schemes

Pei09 [12] Normal
• Introduce the notion of chosen-output security for trapdoor functions
• Applicable to constructing a secure cryptosystem against chosen-ciphertext attack

Boy10 [14] Normal
• Introduce a two-sided function which behaves differently for “firm” trapdoor and
“fickle” trapdoor
• Applicable to a more practical signature scheme by mixing the lattice trapdoors

AP11 [11] Normal • Propose the improved lattice-based trapdoor generation algorithm

CHKP12 [13] Normal
• Explain how to delegate lattice trapdoors using the extending basis technique
• Applicable to constructing a signature scheme without random oracles and hierar-
chical ID-based encryption

BK10 [2] Normal
• Define ring trapdoor functions and give a concrete construction based on lattice
• Applicable to constructing a ring signature

WS11 [15] Normal
• Introduce a new sampling algorithm to construct ring trapdoor function
• Applicable to constructing a ring signature scheme in the random oracle model or
to enhancing the security of a ring signature scheme in the standard model

MP12 [16] Normal

• Introduce a new notion of G-trapdoor and the tag of the trapdoor to get the simpler,
more efficient, and smaller trapdoor
• Propose new algorithms for inverting LWE, sampling SIS preimages, and securely
delegating basis, with G-trapdoor
• Applicable to getting a more efficient lattice-based cryptographic protocol

PW11 [18] Lossy

• Propose general cryptographic primitives called lossy trapdoor functions and all-
but-one (ABO) trapdoor functions
• Introduce the concrete construction of both lossy trapdoor functions and ABO
trapdoor functions based on LWE problem

XXZ12 [21] Lossy
• Introduce the notion of inner-product trapdoor functions and inner-product lossy
trapdoor functions to construct inner product encryption

AKPW13 [22] Lossy
• Lossy/ABO trapdoor functions based on LWR problem
•Both l(λ)-entropic lossy trapdoor functions and l(λ)-entropic ABO trapdoor func-
tions can be used to replace lossy trapdoor functions in PW11 [18]

GVW15 [9] Homomorphic
• Define the notion of homomorphic trapdoor function and its security requirements
as HTDF security
• Applicable to lattice-based levelled fully homomorphic signature scheme

Alp15 [23] Homomorphic
• Introduce puncturable homomorphic trapdoor function to construct a short signa-
ture scheme by combining homomorphic trapdoor functions and lattice mixing and
vanishing technique

WWLG15 [24] Homomorphic • Construct an identity-based homomorphic trapdoor function

FMLP16 [25] Homomorphic
• Define the multi-key authenticator and construct multi-key homomorphic signature
on lattices using homomorphic trapdoor functions

? Note that each scheme is identified with the authors’ initials (e.g. GPV) and the publication year (e.g. 08).
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